Interior-Point Algorithms, Penalty Methods and Equilibrium Problems
نویسندگان
چکیده
In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get around these difficulties, present an example from game theory where this makes a difference in practice, and provide substantial numerical results. We go on to show that penalty methods can resolve some problems that interior-point algorithms encounter in general.
منابع مشابه
The penalty interior-point method fails to converge
Equilibrium equations in the form of complementarity conditions often appear as constraints in optimization problems. Problems of this type are commonly referred to as mathematical programs with complementarity constraints (MPCCs). A popular method for solving MPCCs is the penalty interior-point algorithm (PIPA). This paper presents a small example for which PIPA converges to a nonstationary po...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملGeneralized stationary points and an interior-point method for mathematical programs with equilibrium constraints
Generalized stationary points of the mathematical program with equilibrium constraints (MPEC) are studied to better describe the limit points produced by interior point methods for MPEC. A primal-dual interior-point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced without assuming strict complementarity or the...
متن کاملGeneralized Stationary Points and an Interior Point Method for MPEC
Mathematical program with equilibrium constraints (MPEC) has extensive applications in practical areas such as traffic control, engineering design, and economic modeling. Some generalized stationary points of MPEC are studied to better describe the limiting points produced by interior point methods for MPEC. A primal-dual interior point method is then proposed, which solves a sequence of relaxe...
متن کاملInterior-point Methods for Nonconvex Nonlinear Programming: Convergence Analysis and Computational Performance
In this paper, we present global and local convergence results for an interior-point method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an `1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 34 شماره
صفحات -
تاریخ انتشار 2006